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In this issue of Geology, Tugend et al. (2015, p. 15) discuss rift geom-
etries and hyperextension in the Bay of Biscay–Parentis (BBP) area.  This 
is a well-defined propagating rift/ocean (e.g., Sibuet et al., 2012), with 
crustal architecture revealing a succession of zones typical of magma-poor 
margins: (1) limited crustal stretching, (2) hyperextension, (3) exhumed 
mantle, and (4) ultraslow or normal oceanic crust (cf. Péron-Pinvidic and 
Manatschal, 2009). The zones probably formed as the rift propagated, a 
common mode of continental break-up (e.g., the South Atlantic, Heine et 
al., 2013; Central Atlantic, Kneller and Johnson, 2011, and North Atlantic 
oceans; Sibuet et al., 2012). Tugend et al. show how this margin evolved as 
partitioned transtensional domains along the nascent plate boundary and, 
perhaps most significantly, describe how hyperextension along the bound-
ary localized deformation during later plate convergence.

Hyperextension is defined as stretching of the crust such that the lower 
and upper crust become coupled and embrittled, allowing major faults 
to penetrate to the mantle, leading to partial hydration (serpentinization) 
of the uppermost mantle, as observed in obducted margins in the Swiss 
Alps (e.g., Manatschal, 2004). Hyperextension is documented worldwide, 
e.g., in the South Atlantic (Contrucci et al., 2004), off southern Austra-
lia (Direen et al., 2007) and in the Red Sea (Cochran and Karner, 2007), 
and requires stretching by a factor of 3–4, with crustal thinning to ~8 km 
or less (e.g., Pérez-Gussinyé and Reston, 2001). Off Iberia-Newfound-
land and in the Labrador Sea, fully exhumed serpentinized mantle forms 
50–100 km belts between the hyperextended basins and (“Penrose”) oce-
anic crust with linear magnetic anomalies (Fig. 1).

The Iberian and Newfoundland conjugate margins are testing grounds for 
the concept of hyperextension, with exhumed mantle rocks, serpentinized 
peridotites of continental affinity, sampled at Ocean Drilling Program 
(ODP) sites (e.g., Whitmarsh and Miles, 1995; Tucholke et al., 2004). Fault 
blocks have been drilled and correlated with seismic data on the Galicia 
Bank and seaward (e.g., Tucholke et al., 2007; Ranero and Pérez-Gussinyé, 
2010). ‘Necking’, the process whereby the lithosphere thins through time 
and across a basin, is controversial in these margins. Conjugate margins 
are commonly asymmetric, one margin characterized by gradual thinning 
with a wide transition between continent and ocean, the other by more 
abrupt thinning and a narrower transition (e.g., Hopper et al., 2004). Both 
types, however, show a discrepancy between overall crustal thinning and 
stretching as derived from seismically observable brittle faults. Models to 
explain this discrepancy include large-scale crustal detachments (Lister et 
al., 1991), depth-dependent (coaxial) stretching (i.e., differential extension 
of upper brittle and lower ductile crust), and masking of extensional events 
by polyphase faulting (Reston, 2007). Recent models explain broad hyper-
extended margins such as offshore Galicia or Angola in terms of sequen-
tial upper crustal faulting, with the extension focus migrating oceanward, 
and with upper crustal brittle faulting balanced by lower crustal flow (e.g. 
Ranero and Pérez-Gussinyé, 2010). Higher resolution seismic grids are 
needed to decide which model, or hybrid of models, is valid.

Early Cretaceous break-up along the Galicia margin and in the Bay of 
Biscay may represent the southern end-member of a chain of hyperex-
tended basins along the north Atlantic (e.g., Lundin and Doré, 2011), all 
characterized by highly thinned crust. All failed to achieve full oceanic 
status, subsided rapidly and accumulated sedimentary infill (10 km or 
more in the Møre Basin).  Sub-crustal bodies in some basins have been 

identified as serpentinized mantle (e.g., O’Reilly et al., 1996, Reynisson 
et al., 2010), but this can be difficult to identify from velocity structure 
alone: P-wave to S-wave velocity ratios (Vp/Vs) can be used as a lithol-
ogy indicator, but at a Vp range of 7.0–7.5 km/s there is significant overlap 
with gabbroic rocks (“underplate”), and other potential sub-crustal bodies 
(e.g., Mjelde et al., 2009).

The most intriguing aspect of hyperextended margins may be what dif-
ferentiates them from volcanic passive margins (Fig. 1 and Table 1; see 
also Franke, 2013). Hyperextended margins result from slow extension 
rates and are magma-poor, but it is not clear why. The assumption of slow 
extension rates is based on initial sea-floor spreading half-rates in the order 
of 10 mm/yr (e.g., Sibuet et al., 2004). Magma-rich margins, in contrast, 
are more sharply necked and associated with initial spreading half-rates of 
~25–30 mm/yr (e.g., Schreckenberger et al., 2002; Hopper et al., 2003). 
Extension rates immediately prior to break-up are difficult to quantify in 
hyperextended margins, which provide few clues as to the duration of their 
evolution. Even the well-studied Iberia margin provides limited constraints, 
since boreholes are short and on structural highs rather than in syn-rift 
wedges, and rift successions tend to be too deeply buried to interest the 
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Figure 1. Schematic structure of hyperextended (magma-poor) and 
magma-rich passive margins.

TABLE 1. FACTORS DIFFERENTIATING HYPEREXTENDED (MAGMA-POOR) 

AND VOLCANIC PASSIVE MARGINS

Hyperextended Margin Volcanic Margin

Magma-poor (mantle melt ~10%)
Wide necking zone
Slow extension rate

Serpentinized mantle
No Moho in outer (exhumed) zone

Deep-water breakup

Magma-rich
Narrow necking zone
Rapid extension rate

Seaward-dipping reflectors (SDRs)
Clear Moho

Subaerial breakup
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petroleum industry. Exhumed mantle is particularly challenging, because it 
cannot be isotopically dated and does not show linear magnetic anomalies.

Differences in magmatism between the two margin types are also a rich 
topic for debate. Hyperextended margins are not amagmatic: exhumed 
mantle contains up to ~12% infiltrated melt in the Swiss Alps and Iberian 
margin (Műntener et al., 2010). The degree of melting varies from ~10% 
to 100% between magma-poor and magma-rich margins. The latter (e.g., 
the northeast Atlantic) are attributed by most workers to elevated mantle 
temperatures associated with a plume (e.g., Smallwood and White, 2002). 
It is commonly assumed that the rapid continental break-up and the ini-
tial spreading are caused by this additional heat source, absent in hyper-
extended margins. Alternatively, reversing cause and effect, the amount of 
magmatism may be a function of the spreading rate, correlated with dis-
tance from the plate tectonic pole of rotation, so that slower separation rates 
and magma-poor margins occur closer to the pole (Lundin et al., 2014).

Hyperextended magma-poor margins will probably react differently to 
ocean closure than stronger, thicker magma-rich margins. Hyperextended 
lithosphere is deformation-prone due to extreme crustal thinning and 
partial replacement of peridotite by rheologically weak serpentinite, and 
exhumed mantle will be even weaker. Such zones may have focused com-
pressional deformation on the North Atlantic margin (Lundin and Doré, 
2011) and such weak elements may become important in localizing sub-
duction when oceans close (Tugend et al.). Thus, hyperextended margins 
may have significant roles to play at critical stages of the Wilson Cycle, 
the process whereby oceans open and close along broadly similar lines 
during supercontinent break up (Wilson, 1966).
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